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Thank you for your kind invitation
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Outline

@ What is the state of the art in online assessment (STACK)?
@ | will discuss assessment of proof in general.
© How can we assess students’ proofs online today?
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What is STACK?

STACK is a “question type” for mathematics.

@ STACK generates random questions.
@ Students’ answers contain mathematical content.

@ STACK establishes mathematical properties of students’ answers
with computer algebra (CAS, Maxima).

@ STACK generates formative, summative and evaluative outcomes,
(i.e. feedback, score).
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Why did | build STACK?

Assessment is the cornerstone of effective education.

@ We need assessment worth teaching to.

@ | believe universities (we) need to take responsibility for our
important tools/software.
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System demo

Demonstration of the software.
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School exams in STACK?

(Nadine Kécher & Chris Sangwin, 2014)
International Baccalaureate examinations in STACK?

# marks
(i) Awarded by STACK (2014) exactly 112 18%
(i) Final answers and implied method marks 227 37%
(iii) Reasoning by equivalence 218 36%
Total of max of (i) and (iii) per question 376 61%

The most important single form of reasoning in school mathe-
matics is reasoning by equivalence.
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Reasoning by equivalence

Work line by line. Lines next to each other are “equivalent”.

logg(x +17) — 2 =logz(2x) (x >0,x > —17)

= |0g3(X + 17) — |0g3(2X) = 2
xX+17

©I0g3< ox > =2

xX+17 a2

ox =3=9
Sx 4+ 17 = 18x
SX =1.

The above is a single mathematical object: the argument.
The above is a single (long) English sentence. @
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Line by line reasoning

Solve /3 + 4 = 2 + y/x + 2, working line by line. Leave your answer in fully simplified form.

sqrt(3*x+4) = 2+sqrt(x+2)
3*x+4 = 4+4*sqri(x+2)+(x+2)
x-1 = 2*sqrt(x+2)

XA2-2*x+1 = 4*x+8
xA2-6*x-7=0

(X-7)*(x+1)=0
x=7orx=-1

x=7

Chris Sangwin (University of Edinburgh)

V3z+4=2+4++x+2

ze -4 00)

3z+4=4+4Vx+2+(z+2) zc[-2, 00)
z—1=2z2+2 z € [-2, 00)
22 —2x+1=42+38

22 —62-7=0

(z—7) (z+1)=0

z=Torz=-—1

x=17

]
The variables found in your answer were: [z]
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« Correct answer, well done.

V3T F4=2+T+2 :Be[f%,oo)
3z+4=4+4yVz+2+(x+2) z€[-2 00)
z—1=2z+2 z € [—2, 00)
22 —2zx+1=4z+8

22 —6z—-T7=0

(z—7)(z+1)=0

r=T7orz=-1

=17

Te ol el
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Nature of the subject

Polya 1962: Mathematical Discovery: on understanding, learning and
teaching problem solving.

Polya gives patterns of thought for solving problems:
@ the pattern of two loci,
@ superposition,
@ recursion,
@ the Cartesian pattern.

Each correct pattern of thought matches a style of proof.
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Cartesian pattern

Descartes’ Rules for the Direction of the mind.
@ Reduce any kind of problem to a mathematical problem.
© Reduce any mathematical problem to algebra.
© Reduce any algebra problem to a single equation & solve.
Polya: “The more you know, the more gaps you can see in this project”

Solving the equation is only the last step...
Assessment of the whole process is the challenge!
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Current State of Freeform-Proof Assessment

Currently there is no really good software for proof-checking.
(Yes, “good” is my personal view!)

Professional automatic reasoning systems. (COQ/LEAN)

But professional mathematicians use IATEX for papers.
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Babbage and the Analytical Engine

This is the Analytical Engine invented by Charles Babbage. This is one
of the first mechanical computers.
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Technology which looks back

Babbage set out to print log tables!

LOGARITHMIC BINES,

18 Deg.
L 8ine Diff.  Cosec. Tang.  DIiff. Cotang Secant D. Cosine | °*
Ol DAGRB0 (., 106470120 93033641 o, 106366350 10DIIZIEL oo, ©-0BST23D | 60
1| 08626340 [0, 106473681 93630401 /L0 106360500 100113053 200 0-08sesds | 59
21 O9BIEI0 g, 106408100 93645155 L0 100354845 10011836 o 0°0836865 | 68
8| 9@barass [ 106462736 9BESON0L prid 106349000 10°DIISEST 00 986363 | OF
4| 9IBOTI0 o, 10667200 93056641 o 106843350 100113830 200 9-psse0ro | o6
6 08548150 o, 106451850 9:3002374 gl 106357626 100114224 ood 9°9835TT6 | 56
6 | 0-3663582 10646418 99603100 (o 106381000 100114518 ,o, 99885432 | 54
7| 0-3550007 5420 10-8440093 9-3g78819 713 100326181 100114812 J3% 0-98s5les | 53
8| 98564428 5419 104485574 9367952 7o 100320408 100115108 202 0-pSg480d | 52
9 | 93500886 5410 106430164 9:3635288 B0y 10GB14T6Z 100115401 200 0-dss4500 | 51
10 | 9+35675240 5;3; 10-6424760 9309037 fol 106300063 10011569 20 99584303 | 50
11 | 9-3680637 106419363 93696020 10'8303371 100115092 ,on 9°9884008 | 40

12 | 98586027 D390 106413073 93702816 gg‘?g 106297685 100110288 508 9-988ayiz | 48
13 | 93501400 5382 106408501 9-aroTe9s 5673 100202008 100116585 5F 90883415 | 47
14 | 93500786 5376 106403216 03713667 666 100280333 100110882 Jf 89883118 | 46
15 | 9:3602154 g?’ﬁ? 1063978468 9-3710353 106280687 100117179 o0 99882821 | 45

16 | 9:3607515 10°6392485 93724002 o0, 10626008 J0OLIT4TT oo 99882023 | a¢
17 | 93612870 5355 10-4387130  9-3730645 o1 106260355 100117775 oo 99882995 | 43
18 | 9261807 D347 10-6381783  O-8736%01 geag 10°6203700 10-0118078 zej 9-9881007 | 42
10 | 93623558 5381 106376442 g-saIgse 10-6268070 100118372 7po 09881698 | 41

5334 v E 5633 " 3 ¥
20 | 93023802 5397 106371108 ?37?75(13 5627 109262437  10-0118671 g00 90881329 | 40

Knuth set out to replicate movable type!
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Proof: Assessment of a whole argument

Assessment of a complete proof will require a major change in how we
write mathematics.
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Better interface

In 1668 Pell wrote his proofs using two columns.
58 - Refolution of Problemes.

Firtt then, by D and E (that is, the Sum and- Difference
of two quantities) given, find F,G,T,R, (thatis,the Produ,
Quotient, and Sum and Difference of the Squares.)

a=7 tlat+b=D
§ asin the Probleme.

b—2? 2! a - b=F
2 | 2d— L) £
AR E3 Ry W
311—; 4 A:T; 'A"

5 wb=D_E %
D_¢ |
—_— ] R=wee--—= B ! Ahd- fo Alﬂd B are bolh:
ST 2 % explained by D & E,which was firft
5

D-E to be found, The reft follows eafily.
2

or1 —4

Pell (1668) (see Stedall (2002))
Writing in two columns is not popular for school mathematics (UK). @
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Reasoning by equivalence demo

Replicating standard practice:
Solve /3 + 4 = 2 + y/x + 2, working line by line. Leave your answer in fully simplified form.

sqrt(3*x+4) = 2+sqrt(x+2)
3*x+4 = 4+47Sqri(x+2)+(x+2) V3T A=24 Va2 v€[-5, )
x-1 = 2°sqrt(x+2) 3z+4=4+4yz+2+(z+2) z€[-2, 00)
XN2-2*x+1 = 4*x+8 z—1=2z2+2 z € [—2, 00)
X*2-6%-7=0 2’ —2z+1=4z+8
(x-7)*(x+1)=0 22 _6x_T—=0
x=7orx=-1 (z—7) (z+1)=0
x=7 r=Torzxz=-1

=T

The variables found in your answer were: [z]
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« Correct answer, well done.

V3T F4=2+T+2 :Be[f%,oo)
3z+4=4+4yVz+2+(x+2) z€[-2 00)
z—1=2z+2 z € [—2, 00)
22 —2zx+1=4z+8

22 —6z—-T7=0

(z—7)(z+1)=0

r=T7orz=-1

=17

Te ol el
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Encounters with proof
The short-term goal is not to assess students’ proof.
Assessing components of a proof might better serve students.

Classical ways to reduce the difficulty (cognitive load)
@ Hints.

©@ Split complex problem into parts.
We don’t do the following very much (in the UK).
© Fill-in the missing gaps.
© Faded worked examples.
© Separated concerns.
© Reading comprehension.

®
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Example of proof with gaps

Let P(n) be the statement
n 9 _ n(n+l)(2n+1)
Yok =

since1® = 1 1

o 1-(1+1)‘-3(2~1+1) — 1l v

it follows that P(1) is true.

Assume that P(n) is true.
Yl = YR 4 (n+ 17 sumerzk,1n)+n+1)2

= w +(n+ 1)2 (by the induction hypothesis) ~ +

() () ()|
- 6
(n+1)-(n+141)-(2-(n+1)+1)

= e () (n+ )+ v

Since P(1) and P(n) = P(n + 1) it follows that P(n) is true for all n € N by the principal of
mathematical induction.
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Example of proof with gaps

Complete the following proof.

Theorem: Let X, y and z be three linearly independent vectors. Then

span{x,y,z} = span{x +y,y + z,z + x}.
Proof.
Assume v ‘?‘ W :=span{x +y,y + z,z + x} then there exist a, b, ¢ € R such that

v = a(x+y)+b(y+2) +clz +x)

f‘c+a ‘x+‘b+a ‘y+‘c+b Z

sothatlfv‘ ‘WthenvEU|eW cs |U.

Let U := span{x, y,z}. Assume v‘ €3 ¢ n there exist a, b, c € R such that v = ax + by + cz
: 3

= (-c+b+a)/ | (x + y)+ | (c+b-a)2 | (y + = ta)2| (z + x).

That is to say, U‘ c 3

Hence U = W and

VA IR U

span } =span{x+y,y + %,z + x}.
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Faded worked examples

@ A sequence of questions.
@ Students do more with each step.
© The long-term goal is students become completely independent.

While there is no suggestion we can mark a complete proof online.
| think students can come to class better prepared.
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Separation of concerns

There is a lot going on in a typical proof!
For example

@ Logical status of statements and proof framework.
@ Meaning of terms and statements within the proof.
© Justification of claims.
© Summarizing via high-level ideas.
© Identifying the modular structure.
© Transferring the general ideas or methods to another context.
@ lllustrating with examples.
(Mejia-Ramos 2012)
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Separate concerns example

Let P(n) be the statement " k- k! = (n + 1)!

1. Write the statement P(n + 1): sum(?.k,1,2)=?

2. Calculate

ntl n

Ek«k!fzk-k!
k=1 k=1

writing your answer in simplified form.

3. Calculate

(n+2)! —(n+1)!
writing your answer in simplified form.
4. Assume n. € N. For which values of n is the implication P(n) = P(n + 1) true?

You may answer with an inequality, e.g. n>? ,aset {?, ?, ..., ?} ,orwith n = Nor none .

5. For which valuss of n € N is the P(n) true?

You may answer with an inequality, e.g. n>? ,aset {?, ?, ..., ?} ,orwith n = Nor none .
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Is this trivial for students?

Only 45% of our year 1 students correctly evaluate

(n+2) = (n+ 1) =(n+1)(n+1)!

The separated concerns example is not trivial for our students.

If students complete the CAA correctly before they write a traditional
induction proof they will learn more.
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Reading comprehension

Ask students about a particular proof.
We found it quite hard to write these questions.
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Proof understanding baseline checklist

@ Which formal definitions/notations are relevant to the proof?
@ Describe the overall nested structure of the proof.

© Hypotheses
@ Where is each hypothesis used in the proof?
@ In ageneral proof, which examples do/do not satisfy the hypotheses? If there is more
than one hypothesis, do we have examples which satisfy each logical combination?
0 Is a correct warrant justifying each step in the proof given? If not then provide one.

e Does the proof make use of previously known theorems or results? If so, what are they
and how are they used?

e Does the proof make use of proof-gadgets? If so, what are they and how are they used?
0 For an if ... then proof, is the converse true or false? Do we have counter-examples?

Q In a general proof, can you follow the proof steps through with a simple specific example,
including any proof-gadgets?
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Proof understanding baseline checklist

@ Which formal definitions/notations are relevant to the proof?
@ Describe the overall nested structure of the proof.

© Hypotheses
@ Where is each hypothesis used in the proof?
@ In ageneral proof, which examples do/do not satisfy the hypotheses? If there is more
than one hypothesis, do we have examples which satisfy each logical combination?
0 Is a correct warrant justifying each step in the proof given? If not then provide one.

e Does the proof make use of previously known theorems or results? If so, what are they
and how are they used?

e Does the proof make use of proof-gadgets? If so, what are they and how are they used?
e For an if ... then proof, is the converse true or false? Do we have counter-examples?

e In a general proof, can you follow the proof steps through with a simple specific example,
including any proof-gadgets?
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Nested structure of a proof?

Traditional proof:

Theorem
Ifa+bv2=c+dv2anda,b,c,deQthena=candb=d.

Proof.

Suppose (for a contradiction) that b  d. If a+ bv/2 = ¢ + dv/2 then,
rearranging, we have (a — ¢) = (d — b)v/2. Dividing gives

V2 = £-% € Q. But [as previously proved] V2 ¢ Q. Thisis a
contradiction, so b = d. Then setting b= d in a+ bv2 = c + dv2 it
follows a = c. Ol

V.
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More structured

Proof.
Assume a+ bv2 = c+dv2and a,b,c,d € Q. Then

a+bv2=c+dv2
& (a—c)=(d—b)V2.

@ If b# dthen v2 = 2=¢. Since a,b,c,d € Q it follows 2=¢ € Q.

But [as previously proved] v2 ¢ Q. This contradicts the
assumption b # d.

@ Ifb=dthen(a—c)=0,i.e. a= c, and the theorem holds.
The only case which holds is b= d and so a= c. O
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Explicit structure

Equivalence reasoning.
Cases:

@ b # d: Contradiction.
@ b = d: Direct proof.
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Proof understanding baseline checklist

@ Which formal definitions/notations are relevant to the proof?
@ Describe the overall modular recursive structure of the proof.

© Hypotheses
@ Where is each hypothesis used in the proof?
@ In ageneral proof, which examples do/do not satisfy the hypotheses? If there is more
than one hypothesis, do we have examples which satisfy each logical combination?
0 Is a correct warrant justifying each step in the proof given? If not then provide one.

e Does the proof make use of previously known theorems or results? If so, what are they
and how are they used?

@ Does the proof make use of proof-gadgets? If so, what are they and how are they used?
e For an if ... then proof, is the converse true or false? Do we have counter-examples?

e In a general proof, can you follow the proof steps through with a simple specific example,
including any proof-gadgets?
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Proof gadgets

“a device within a proof, built to establish certain conditions must hold.”
E.g. proof of infinitely many primes

N =pipz2---pn+1
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Proof understanding baseline checklist

@ Which formal definitions/notations are relevant to the proof?
@ Describe the overall modular recursive structure of the proof.

© Hypotheses
@ Where is each hypothesis used in the proof?
@ In ageneral proof, which examples do/do not satisfy the hypotheses? If there is more
than one hypothesis, do we have examples which satisfy each logical combination?
0 Is a correct warrant justifying each step in the proof given? If not then provide one.

e Does the proof make use of previously known theorems or results? If so, what are they
and how are they used?

e Does the proof make use of proof-gadgets? If so, what are they and how are they used?
e For an if ... then proof, is the converse true or false? Do we have counter-examples?

e In a general proof, can you follow the proof steps through with a simple specific example,
including any proof-gadgets?
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Which examples do/do not satisfy the hypotheses?

Theorem: If (a,) is a bounded and increasing sequence then

limp_o @n exists.

Inc? Bdd? Con ? | Example
T T T Exemplify theorem:
an=1-1
T T F Counter example!
T F T Note A.
T F F ap=n
F T T an=1/n
F T F ap=(-1)"
F F T Note A
F F F an=(—n)"

Note A: Bounded is a nhecessary condition for convergence.
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Encounters with proof

Valuable activities associated with proof.
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Writing sequences of problems

... is something of an art form.
It is much easier to ask students to “prove this...”!
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Conclusion

Computer aided assessment of mathematics: the current state
of the art and a look to the future.

@ We can largely automate the methods-based parts.

@ Increasingly asking about proof and reasoning.

@ We might better serve students with careful encounters with
proofs.

@ Assessment of free-form proof is some way off, but online
submission and human marking does have its place.
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